Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Rui-Feng Song, Yu-Hong Wang* and Fan Jiang

Department of Chemistry and Chemical Engineering, University of Science and Technology of Suzhou, Suzhou 215009,
People's Republic of China
Correspondence e-mail:
wangyuhong@mail.usts.edu.cn

## Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
$R$ factor $=0.055$
$w R$ factor $=0.101$
Data-to-parameter ratio $=17.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

## Bis(isothiocyanato- $\kappa \boldsymbol{N}$ )bis[8-(methoxycarbonyl-methoxy)quinoline- $\kappa N$ ]copper(II)

In the title mononuclear complex, $\left[\mathrm{Cu}(\mathrm{NSC})_{2}\left(\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3}\right)_{2}\right]$, the isothiocyanate ions and 8-(methoxycarbonylmethoxy)quinoline molecules act as monodentate ligands. The ligand geometry about the Cu centre, which lies on a twofold rotation axis, can be described as square-planar or grossly distorted octahedral, formed by two N atoms of the isothiocyanate ions, two quinoline N atoms and two methoxy O atoms of the 8 (methoxycarbonylmethoxy)quinoline ligands. The $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ cis angles around the Cu atom vary from 88.38 (12) to 94.27 (15) ${ }^{\circ}$ and the $\mathrm{Cu}-\mathrm{N}$ bond distances are 1.950 (2) and 2.024 (2) Å.

## Comment

Derivatives of quinoline are well-known ligands in transition metal coordination compounds (Ghedini et al., 2002; Inomata et al., 1999; Jotterand et al., 2001; Sivakolunthu et al., 1998). Such compounds are being increasingly studied in modelling biological systems, one target being the metal binding site of copper metalloenzymes (Sorrel, 1989). In the light of this interest, we have prepared the biologically relevant ligand 8 (methoxycarbonylmethoxy)quinoline and its title copper complex, (I).

(I)

As shown in Fig. 1, (I) is mononuclear. Each $\mathrm{Cu}^{\mathrm{II}}$ centre has a slightly distorted square geometry (Table 1) comprising of two isothiocyanate N atoms and two quinoline N atoms of the 8 -(methoxycarbonylmethoxy)quinoline ligands. The coordination plane is defined by $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{~N} 2^{\mathrm{i}}$ and $\mathrm{N} 1^{\mathrm{i}}$ [symmetry code: (i) $1-x, y, \frac{1}{2}-z$ ]. Atoms $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{~N} 2^{\mathrm{i}}$ and $\mathrm{N} 1^{\mathrm{i}}$ show deviations of $0.3295(1), \quad-0.3248(1), 0.3248(1)$ and $-0.3295(1)^{\circ}$, respectively, from the least-squares mean plane, and the Cu centre is constrained to lie in the plane by symmetry. The $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ angles vary from 88.38 (12) to $94.27(15)^{\circ}$. The $\mathrm{Cu}-\mathrm{N}_{q}(q=$ quinoline $)$ bond length of

Received 4 October 2004 Accepted 11 October 2004 Online 22 October 2004


Figure 1
View of (I), shown with $30 \%$ probability displacement ellipsoids and small spheres for H atoms [symmetry code: (i) $1-x, y, \frac{1}{2}-z$ ]. The long $\mathrm{Cu} 1 \cdots \mathrm{O} 1$ interactions are indicated by dashed lines.
2.024 (2) $\AA$ is somewhat longer than the $\mathrm{Cu}-\mathrm{N}_{\mathrm{NSC}}$ bond length of 1.950 (2) $\AA$, although both distances fall within the expected range of distances for $\mathrm{Cu}-\mathrm{N}$ bonds (Breneman \& Parker, 1993; Kožišek \& Kabešová, 1990). The NSC groups in (I) are almost linear [179.0 (3) ${ }^{\circ}$, and slight bending is observed in the $\mathrm{Cu}-\mathrm{N}-\mathrm{C}$ linkage $\left[177.1(2)^{\circ}\right]$. The mean planes of the two quinoline moieties form a dihedral angle of $86.5(1)^{\circ}$. There is a also pair of O atoms, O 1 and $\mathrm{O} 1^{\mathrm{i}}$, each some 2.4708 (19) $\AA$ from Cu1. If these are considered to be chemically significant interactions, a grossly distorted octahedral coordination about Cu 1 results (Fig. 1).

The molecular packing in (I) is influenced by intermolecular $\pi-\pi$ interactions which exist between the parallel quinoline rings of neighbouring complex molecules, with a separation of approximately $3.56 \AA$.

## Experimental

Solid KSCN ( $19.4 \mathrm{mg}, 2 \mathrm{mmol}$ ) was added slowly with continuous stirring to a solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}(57 \mathrm{mg}, 1 \mathrm{mmol})$ in distilled water $(5 \mathrm{ml})$. 8 -(Methoxycarbonylmethoxy)quinoline $(21.8 \mathrm{mg}$, 1 mmol ) was dissolved in methanol ( 20 ml ) and the two solutions were mixed and stirred for 5 h . The resulting solution was filtered. Pale green square-prismatic crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the resulting solution at room temperature. Analysis found: C 50.12 , H 3.57, N 9.09\%; calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{CuN}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$ : C 50.85 , H 3.61, N $9.12 \%$

## Crystal data

[^0][^1]
## Data collection

Rigaku Mercury diffractometer
$\omega$ scans
Absorption correction: multi-scan
(Jacobson, 1998)
$T_{\text {min }}=0.700, T_{\text {max }}=0.906$
14799 measured reflections
3086 independent reflections

## Refinement

Refinement on $F^{2}$

$$
\begin{aligned}
& w=1 /[ \sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0246 P)^{2} \\
&+6.2754 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.42 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.101$
$S=1.22$
3086 reflections
179 parameters

$$
\begin{aligned}
& 2849 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.042 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-21 \rightarrow 17 \\
& k=-13 \rightarrow 13 \\
& l=-20 \rightarrow 22
\end{aligned}
$$

H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

| $\mathrm{Cu} 1-\mathrm{N} 2$ | $1.950(2)$ | $\mathrm{Cu} 1-\mathrm{O} 1$ | $2.4708(19)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{Cu} 1-\mathrm{N} 1$ | $2.024(2)$ |  |  |
| $\mathrm{N} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 2$ | $94.27(15)$ | $\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1$ | $101.17(9)$ |
| $\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$ | $91.79(10)$ | $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$ | $72.38(7)$ |
| $\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$ | $160.81(9)$ | $\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$ | $88.58(9)$ |
| $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$ | $88.38(12)$ | $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$ | $97.17(8)$ |

Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.
H atoms were included in calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 (aromatic), 0.99 (ethyl) and $0.98 \AA$ (methyl), and with $U_{\text {iso }}($ aromatic and ethyl $)=1.2 U_{\text {eq }}(\mathrm{C})$ and $U_{\text {iso }}($ methyl $)=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: CrystalClear (Molecular Structure Corporation, 2000; Rigaku Corporation, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The work was supported by the Natural Science Foundation of the University of Jiangsu Province (No. 03KJD150203) and the Science Foundation of the University of Science and Technology of Suzhou.

## References

Breneman, G. L. \& Parker, O. J. (1993). Polyhedron, 12, 891-895.
Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Ghedini, M., Deda, M. L., Aiello, I. \& Annarita Grisolia, A. (2002). J. Chem. Soc. Dalton Trans. pp. 3406-3409.
Inomata, Y., Haneda, T. \& Howell, F. S. (1999). J. Inorg. Biochem. 76, 13-17.
Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
Jotterand, N., Pearce, D. A. \& Imperiali, B. (2001). J. Org. Chem. 66, 3224 3228.

Kožíšková. Z., Kožišek, J. \& Kabešová, M. (1990). Polyhedron, 9, 1029-1034.
Molecular Structure Corporation (2000). CrystalClear. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Rigaku/MSC (2003). CrystalStructure. Version 3.5.1. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Rigaku (1999). CrystalClear. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sivakolunthu, S., Saroja, B. \& Sivasubramanian, S. (1998). Indian J. Chem. Sect. A, 37, 357-360.
Sorrel, T. N. (1989). Tetrahedron, 45, 3-68.


[^0]:    $\left[\mathrm{Cu}(\mathrm{NSC})_{2}\left(\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3}\right)_{2}\right]$
    $M_{r}=614.14$
    Monoclinic, C2/c
    $a=16.921$ (4) A
    $b=10.073$ (2) A
    $c=17.590$ (5) $\AA$
    $\beta=115.647$ (4) ${ }^{\circ}$
    $V=2702.6(11) \AA^{3}$
    $Z=4$

[^1]:    $D_{x}=1.509 \mathrm{Mg} \mathrm{m}^{-3}$
    Mo $K \alpha$ radiation
    Cell parameters from 5205 reflections
    $\theta=3.0-27.5^{\circ}$
    $\mu=1.01 \mathrm{~mm}^{-1}$
    $T=193$ (2) K
    Block, green
    $0.38 \times 0.24 \times 0.10 \mathrm{~mm}$

